Abstract

Climate change and nitrogen (N) pollution are altering biogeochemical and ecohydrological processes in dryland watersheds, increasing N export, and threatening water quality. While simulation models are useful for projecting how N export will change in the future, most models ignore biogeochemical “hotspots” that develop in drylands as moist microsites in the soil become hydrologically disconnected from plant roots when soils dry out. These hotspots enable N to accumulate over dry periods and rapidly flush to streams when soils wet up. To better project future N export, we developed a framework for representing hotspots using the ecohydrological model RHESSys. We then conducted a series of virtual experiments to understand how uncertainties in model structure and parameters influence N export to streams. Modeled N export was sensitive to three major factors (a) the abundance of hotspots in a watershed: N export increased linearly and then reached an asymptote with increasing hotspot abundance; this occurred because carbon and N inputs eventually became limiting as hotspots displaced vegetation cover, (b) the soil moisture threshold required for subsurface flow from hotspots to reestablish: peak streamflow N export increased and then decreased with an increasing threshold due to tradeoffs between N accumulation and export that occur with increasingly disconnected hotspots, and (c) the rate at which water diffused out of hotspots as soils dried down: N export was generally higher when the rate was slow because more N could accumulate in hotspots over dry periods, and then be flushed more rapidly to streams at the onset of rain. In a case study, we found that when hotspots were modeled explicitly, peak streamflow nitrate export increased by 29%, enabling us to better capture the timing and magnitude of N losses observed in the field. N export further increased in response to interannual precipitation variability, particularly when multiple dry years were followed by a wet year. This modeling framework can improve projections of N export in watersheds where hotspots play an increasingly important role in water quality.

Ren J., Hanan E.J., Greene A., Tague C., Krichels A.H., Burke W.D., Schimel J.P., Homyak P.M. 2024, Simulating the role of biogeochemical hotspots in driving nitrogen export from dryland watersheds, Water Resources Research, 60(3): e2023WR036008

Extension Associated Contacts

 

Also of Interest:

 
Exotic Insects Invading Nevada’s Trees! Be a Citizen Monitor for Urban and Native Forests
Trees in cities create an “urban forest”. Protecting these trees maintains cooler temperatures, creates an aesthetically pleasing setting, and provides a home for birds. Boring insects can destroy trees, and this publication describes the damage and how to preserve trees for gene...
Skelly, J., and O'Callaghan, A. 2012, Extension, University of Nevada Reno, SP-12-06
Thinning and Sanitation: Tools for the management of bark beetles in the Lake Tahoe Basin
From 1994 to 1996, five interstate forest fires in eastern Sierra Nevada forests chronically infested with bark beetles claimed $40 million in housing and property damage, timber loss, and soil stabilization costs.
Donaldson, S., Seybold, S.J. 1998, Extension | University of Nevada, Reno, FS-98-42
Elm Leaf Beetle
This fact sheet contains information on elm leaf beetles such as the life cycle, damage, cultural management, pesticides and many more.
Carlos, W., Davison, J., and Knight, J. 2004, 2004