Abstract

Climate change and nitrogen (N) pollution are altering biogeochemical and ecohydrological processes in dryland watersheds, increasing N export, and threatening water quality. While simulation models are useful for projecting how N export will change in the future, most models ignore biogeochemical “hotspots” that develop in drylands as moist microsites in the soil become hydrologically disconnected from plant roots when soils dry out. These hotspots enable N to accumulate over dry periods and rapidly flush to streams when soils wet up. To better project future N export, we developed a framework for representing hotspots using the ecohydrological model RHESSys. We then conducted a series of virtual experiments to understand how uncertainties in model structure and parameters influence N export to streams. Modeled N export was sensitive to three major factors (a) the abundance of hotspots in a watershed: N export increased linearly and then reached an asymptote with increasing hotspot abundance; this occurred because carbon and N inputs eventually became limiting as hotspots displaced vegetation cover, (b) the soil moisture threshold required for subsurface flow from hotspots to reestablish: peak streamflow N export increased and then decreased with an increasing threshold due to tradeoffs between N accumulation and export that occur with increasingly disconnected hotspots, and (c) the rate at which water diffused out of hotspots as soils dried down: N export was generally higher when the rate was slow because more N could accumulate in hotspots over dry periods, and then be flushed more rapidly to streams at the onset of rain. In a case study, we found that when hotspots were modeled explicitly, peak streamflow nitrate export increased by 29%, enabling us to better capture the timing and magnitude of N losses observed in the field. N export further increased in response to interannual precipitation variability, particularly when multiple dry years were followed by a wet year. This modeling framework can improve projections of N export in watersheds where hotspots play an increasingly important role in water quality.

Ren J., Hanan E.J., Greene A., Tague C., Krichels A.H., Burke W.D., Schimel J.P., Homyak P.M. 2024, Simulating the role of biogeochemical hotspots in driving nitrogen export from dryland watersheds, Water Resources Research, 60(3): e2023WR036008

Extension Associated Contacts

 

Also of Interest:

 
Photo of mayweed chamomile plant with white flower
Nevada Noxious Weed Field Guide – Mayweed chamomile
Mayweed chamomile is a noxious weed that has been identified by the state of Nevada to be harmful to agriculture, the general public, or the environment. Learn more about this weed.
Blecker, L., Creech, E., Dick, J., Gephart, S., Hefner, M., Kratsch, H., Moe, A., Schultz, B. 2021, Extension, University of Nevada, Reno, Field Guide
Does Cooperative Extension Have a Role to Play in County Emergency Management and/or Disaster Preparedness?
While Extension may have the knowledge and skills to be an asset to the county or local emergency management and/or disaster preparedness teams, they may not be collaborating with the local authorities prior to a major crisis event.
Chichester, L. & Emm, S. 2019, Journal of the National Association of County Agriculture Agents, Vol12, Iss2, Dec. 2019
dumping trash in carson foothills
Resident Perceptions of Illegal Dumping In Northern Nevada
Illegally dumped vehicles, fencing, and electronic equipment can cause harm to both domestic and wild animals that may be cut, become entwined, or be exposed to chemicals. Additionally, lost revenue in the form of foregone dumping fees and vehicle scrapping (metal and parts) may ...
Cowee, M. and Curtis, K. 2011, Extension | University of Nevada, Reno, FS-11-03
Home Vegetable Production in Southern Nevada
The Home Vegetable Production fact sheet was written to aid people who wish to grow their own food, but may be intimidated by Southern Nevada’s environment. It gives info on planting times, appropriate plants for this region, and ways to deal with problems gardeners may face.
O'Callaghan, A. M. 2002, Extension, University of Nevada Reno, FS-02-61
closeup of ryegrass
Can We Use Cover Crops in Nevada?
Recognizing success may require a shift in perspective - from focusing solely on yield and annual profit to valuing soil health, water use efficiency, and sustainability.
G. McCuin, J.K. Solomon, J. Frey 2025, University of Nevada, Reno Extension, Blog posts