In the late 1800s, mills in the Washoe Lake area, Nevada, used elemental mercury to remove gold and silver from the ores of the Comstock deposit. Since that time, mercury-contaminated waste has been distributed from Washoe Lake, down Steamboat Creek, and to the Truckee River. The creek has high mercury concentrations in both water and sediments, and continues to be a constant source of mercury to the Truckee River. The objective of this study was to determine concentrations of total and methyl mercury (MeHg) in surface sediments and characterize their spatial distribution in the Steamboat Creek watershed. Total mercury concentrations measured in channel and bank sediments did not decrease downstream, indicating that mercury contamination has been distributed along the creek’s length. Total mercury concentrations in sediments (0.01–21.43 mg/g) were one to two orders of magnitude higher than those in pristine systems. At 14 out of 17 sites, MeHg concentrations in streambank sediments were higher than the concentrations in the channel, suggesting that low banks with wet sediments might be important sites of mercury methylation in this system. Both pond wetland and channel sites exhibited high potential for mercury methylation (6.4–30.0 ng g-1 day-1). Potential methylation rates were positively correlated with sulfate reduction rates, and decreased as a function of reduced sulfur and MeHg concentration in the sediments. Potential demethylation rate appeared not to be influenced by MeHg concentration, sulfur chemistry, DOC, sediment grain size or other parameters, and showed little variation across the sites (3.7–7.4 ng g-1 day-1).

Blum, M., M. S. Gustin, S. Swanson, and S. G. Donaldson 2003, Mercury in Water and Sediment of Steamboat Creek, Nevada: Implications for Stream Restoration., J. Am. Water Res. Assoc., 37(4):795-804.

Learn more about the author(s)

 

Also of Interest:

 
catepillar
A Northern Nevada Homeowner's Guide to Identifying and Managing Cabbage Caterpillars
This fact sheet describes the identifying features, life cycle, plant damage, and control methods for managing common caterpillar pests on various crops in the cabbage family.
K. Burls, W. Hanson Mazet, H. Kratsch 2021, Extension, University of Nevada, Reno, FS-21-109
A Northern Nevada Homeowner's Guide to Identifying and Managing Earwigs
This fact sheet describes the identifying features, life cycle, plant damage, and control methods for managing earwigs in Nevada.
K. Burls, W.Hanson Mazet, H. Kratsch 2021, Extension, University of Nevada, Reno, FS-21-108
stink bug
A Northern Nevada Homeowner's Guide to Identifying and Managing Shield Bugs
This fact sheet describes the identifying features, life cycle, plant damage, and control methods for managing Shield Bugs in Nevada.
K. Burls, W. Hanson Mazet, H. Kratsch 2021, Extension, University of Nevada, Reno, FS-21-110
squash bug
A Northern Nevada Homeowner's Guide to Identifying and Managing Squash Bugs
This fact sheet describes the identifying features, life cycle, plant damage, and control methods for managing Squash Bugs in Nevada.
K. Burls, W. Hanson Mazet, H.i Kratsch 2021, Extension, University of Nevada, Reno, FS-21-111
Needs Assessment for Noxious Weeds in Churchill County: Part 2 of 5 - Problems of and Obstacles to Weed Management
This publication discusses the results from a needs assessment conducted by the University of Nevada Cooperative Extension and looks at the problems and obstacles associated with weed management.
Powell, P., Davison, J., Schultz, B., Creech, E., and Singletary, L. 2011, University of Nevada Extension, FS-2011-73